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Abstract: A new class of cytotoxic heteroaromatic cations is
presented, based on the dihydro-imidazo-phenanthridinium
framework (DIP), that have affinity for DNA and cytotoxicity
toward cancerous cells. The DIP framework is particularly
tunable due to the flexible synthetic methodology. Further-
more, the central moiety has proved to be very stable to
hydrolysis and reduction compared to other phenanthridinium-
based agents.

Nitrogen heteroaromatic cations are interesting com-
pounds due to their reactivity and biological proper-
ties.1,2 In particular, the phenanthridinium moiety has
given rise to a lot of attention because of its implication
in the scaffold of a number of DNA intercalating agents
with antitumor properties,3,4 DNA drug targeting ap-
plications,5,6 and DNA probes.7 With a view of increasing
their biological properties, phenanthridinium deriva-
tives have been subject to diverse ring extensions
(Figure 1). Although annelation of rings a and c of the
phenanthridinium framework have been extensively
investigated,8-11 the heteroaromatic middle ring b has
barely been explored.

The highly polar iminium moiety of the BCPAs
(Figure 1) was proved to be essential to their antitumor
properties.12 Nevertheless, the iminium moiety is highly
reactive13-16 and therefore becomes an easy target for
in vivo metabolism. Under physiological conditions,
most of the phenanthridinium-based anticancer agents
have the common drawback of being easily attacked by
biological reducing agents such as NADH,17 as well as
being subject to alpha addition of a hydroxide, forming
pseudobases. Both transformations disturb the planar-
ity of the framework and remove the positive charge
necessary for the biological activity of the molecule.12

Moreover, the alkyl group on the quaternary nitrogen
can be disconnected from the aromatic platform to give
the corresponding neutral nonactive phenanthridine
derivative.18 For these metabolic reasons, preclinical
studies on the antileukemic compounds nitidine and
fagaronine were abandoned due to their incompatibility
with biological fluids.19

Therefore, a great deal of work has focused on trying
to strengthen the scaffold of phenanthridinium deriva-

tives.4,12,17,18 As reported by T. Nakanishi et al., NK109
(Figure 1) has interesting charge delocalization proper-
ties leading to higher stability.4 At physiological pH, the
phenolate anion on R3 is in conjugation with the
iminium moiety, preventing alpha addition of hydrox-
ide12 as well as improving resistance to biological
reducing agents.17

Recently, we have exploited the reactivity of the
phenanthridinium iminium moiety in an annelation
reaction.14 A primary amine reacts with 2-bromoethyl-
phenanthridinium to yield a new phenanthridinium-
ring-extended framework in one-pot: 2,3-dihydro-1H-
imidazo[1,2-f]phenanthridinium (DIP) 4 (Scheme 1).

In an analogous manner to NK109, the dihydro-
imidazolium ring of DIP derivatives 4 (Scheme 1) should
prevent reduction and pseudobase formation via delo-
calization of the positive charge. The resonance between
the two nitrogen atoms of the DIP should decrease the
reactivity of the CN double bond. Herein, we report the
stability advantages of the DIP framework, along with
preliminary in vitro cytotoxicity and DNA binding
measurements.

The stability of the DIP framework has been demon-
strated by two different experiments highlighting their
resistance against both reducing agents and hydroxide
addition. The resistance of the DIP framework toward
reducing agent was investigated via a simple NMR
phase/transfer experiment. In two different NMR tubes,
the molecule 4b and the reference 5-methyl-phenan-
thridinium bromide were dissolved in a CDCl3/D2O
biphasic solution. NaCNBH3 (2 equiv) was added to
make a 50 mM solution, and the NMR tubes were
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Figure 1. Some reported extensions around phenanthri-
dinium core.

Scheme 1. a One-Pot Reaction Leading to DIP 4a-d14

a Reagent and conditions: (a) R-NH2, Na2CO3, water/ethyl
acetate, N2, rt, 3H. (b) Aqueous wash, NBS, rt, 3 h in the dark.
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shaken. In the case of the reference molecule, a purple
product instantaneously precipitates from the D2O layer
and shifts toward the CDCl3 layer where 5-methyl-
dihydro-phenanthridine was characterized by 1H and
13C NMR spectroscopy. No evidence of reduction was
observed from compound 4b. A similar experiment was
also undertaken with the biological reducing agent
NADH leading to reduction of the reference within an
1 h, but leaving 4b unaffected, even after 24 h exposure
time. Note that NADH is the coenzyme involved in the
bioreduction of BCPAs.17

The susceptibility of the control 5-methyl-phenan-
thridinium bromide and DIP 4b to undertake addition
of hydroxide in aqueous medium was investigated by
the method of Albert and Serjeant using UV spectro-
photometry measurements.20 It was found that the
reference 5-methyl-phenanthridinium bromide becomes
affected around pH 8. The pseudo-base formation seems
to be accompanied by an irreversible oxidation process,
preventing the determination of an accurate pK(ROH),
i.e: pH value at which 50% of the starting material is
transformed into its pseudobase. Nevertheless, the
apparent sensitivity of this reference to alkaline pH is
in accordance with the pK(ROH) of BCPAs sanguinarine,
chelerythrine, and nitidine (Figure 1), reported to be
5.75, 6.67, and 9.76, respectively.12,21 On the other hand,
due to the introduction of an amidinium moiety, raising
the electron density around the positive center, the DIP
4b shows a much higher resistance to pseudobase
formation, with a calculated pK(ROH) of 11.4.

Crystallographic analysis of 4b (Figure 2) shows the
bonds N2-C31 and C31-N1 to be equidistant. This
confirms the charge delocalization over the two nitrogen
atoms, which is responsible for the higher stability of
the DIP framework.

The demonstrated high stability of the DIP frame-
work is expected to disfavor the cell metabolism pro-
cesses that are involved in the case of BCPAs (Figure
1). In vitro cytotoxicity studies were undertaken with
human ovarian tumor cell line A2780. A growth inhibi-
tion assay with 24 h drug exposure and a 3 day recovery
period reveals that DIP derivatives 4a-c have cytotox-
icity within the same order of magnitude as both
chelerythrine and the clinically used antitumor agent
carboplatin. However, compound 4d shows much higher
cytotoxicity, with an IC50 value in the nanomolar range
(Table 1).

Like most of the BCPAs, the cytotoxicity of the DIP
framework is likely to come from the intercalation of
the aromatic platform between the DNA base pairs. To
evaluate the DNA binding affinity of the DIP frame-
work, ITC experiments were undertaken on a DNA
solution.22 Binding constants in the region of 104-105

M-1 were obtained (Table 1), which are comparable to
other phenanthridinium-based DNA intercalating agents.
Further studies concerning the mode of action of the
DIPs are ongoing.

In summary, it has been shown that the fusion of a
dihydro-imidazo moiety onto a phenanthridinium frame-
work leads to important stability advantages. The
general cytotoxicity associated with the phenanthri-
dinium moiety is maintained in the resulting DIP
framework and even dramatically improved in the case
of molecule 4d. The DIP derivatives have also interest-
ing DNA binding properties. The simplicity and gener-
ality of the annelation reaction14 could be used to
strengthen the most labile BCPAs and should provide
new horizons to some clinically abandoned phenanthri-
dinium antitumor agents. Additionally, it could facilitate
the development of new druglike heterocycles.
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